

Managerial, Social and Environmental Aspects of the Forestbased Sector for Sustainable Development: 40th Anniversary Conference for 4.05.00

Brno 4-6 October 2021

Sustainability impact assessment of forestwood supply chain: an experience from Italy

<u>Claudia Becagli¹</u>, Elisa Bianchetto¹, Francesco Geri², Alessandro Paletto¹, Sandro Sacchelli ², Isabella De Meo¹

Council for Agricultural Research and Economics
 Department of Agriculture, Food, Environment and Forestry

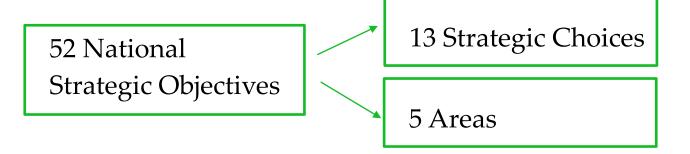
The 2030 Agenda for Sustainable Development

Adopted in September 2015 at the UN summit for Sustainable Development, as a new global development framework for the next 15 years (2015-2030)

• 17 Sustainable Development Goals (SDGs) and 169 targets

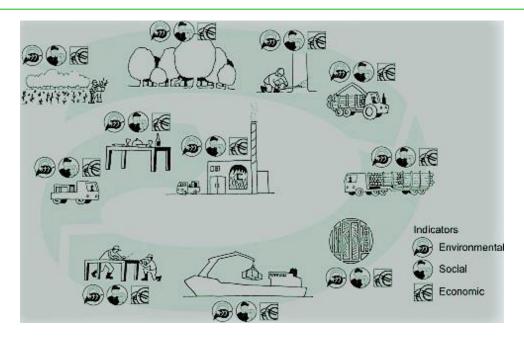
The 2030 Agenda for Sustainable Development

- ✓ The universal agenda targeting both developing and developed world
- ✓ The 2030 Agenda has at its core the integration of **economical**, **social**, and **environmental impacts**



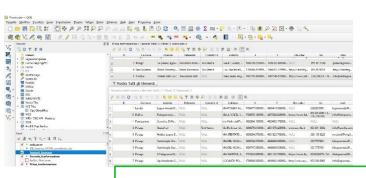
The National Strategy for Sustainable Development (SNSvS)

Developed in 2017 adopting a bottom-up approach based on the direct involvement of institutional actors (Ministries, public administrations, universities and research institutes) and the consultation of civil society.


The **forest-based sector** plays a key role ensuring the sustainable and balanced environmental, economic, and social development through the use of bio-based resources in a "circular bioeconomy"

Sustainability impact Assessment (SIA)

Among the tools to support the evaluation of policies taking account of sustainability. SIA is a process to identify and assess the impacts of strategies and single operations with a systematic, integrated, and iterative approach.


SIA approach in the forest-based sector: a case study in Italy

The process is structured in 4 phases

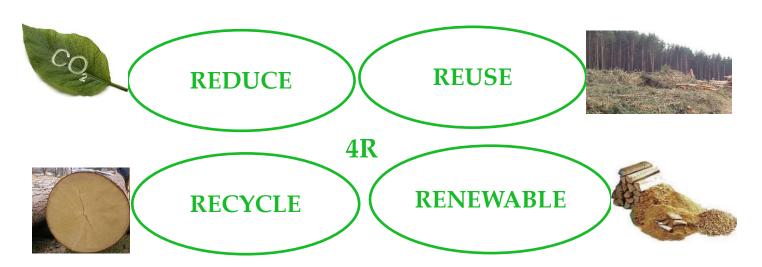
1. Review- Set of indicators

2. Involvement of actors of forest-wood chain

3. Development of a GIS-Based procedure

4. Implementation and testing of the GIS-Based procedure in a pilot area

| The state of the



SIA process- 1st Step: Literature review

Literature review - A set of indicators suitable to assess the forest-wood chain

14 Indicators are identified and divided into four groups corresponding to the 4R of circular bioeconomy

SIA process -2nd Step: Online questionnaire and evaluation of indicators

✓ 30 actors of the forest-based sector have been involved through a **questionnaire.** Actors identify and weight indicators.

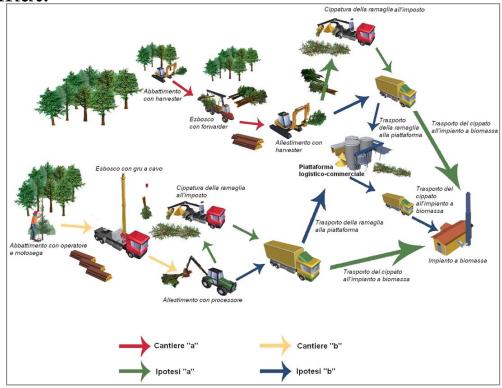
Criteria used to assess the indicators:

- **Efficiency** in achieving the goals
- Applicability to the forest-wood supply chain
- Replicability in other forest contexts

SIA process -2nd Step: Online questionnaire and evaluation of indicators

✓ At the end of the evaluation process, 7 of the 14 indicators were selected to be included in the development of the DSS.

4R	Indicator	Definition
Reduce	I1 - Ratio (on annual basis) between annual value and annual mean volume of harvested mass (€/m³·y¹) I2 - CO₂ emissions per unit of wood product (tCO₂/m³)	Improving of the process efficiency reducing the utilization of natural resources
Reuse	I3 – Harvested surface (ha/y) I4 – Index of reuse (m³·years)	Forest surface yearly harvested The index combines: i) the wood products life span of product; ii) the percentage of wood product / material that can be reused; iii) the number of cycles of wood product reuse
Recycle	I5 - Ratio between the potential economic value of the wood assortment and the real value earned (\in/\in)	Valorisation of the valuable wood high quality assortments
Recover	I6 - Percentage of wood waste for bioenergy production (%) I7 - Amount of CO ₂ emissions saved per unit of energy produced by wood wastes (gCO ₂ /kWh)	Energy recovery from waste wood products Emissions saved from energy recovery from waste wood products



SIA process - 3rd Step: Development of a GIS-Based procedure

Development of a GIS-Based procedure to identify suitable zones for the forest-wood supply chain implementation.

The **DSS** called **r.forcircular** was implemented as add-on of GRASS GIS and is currently available both as beta version of Graphical User Interface (GUI)

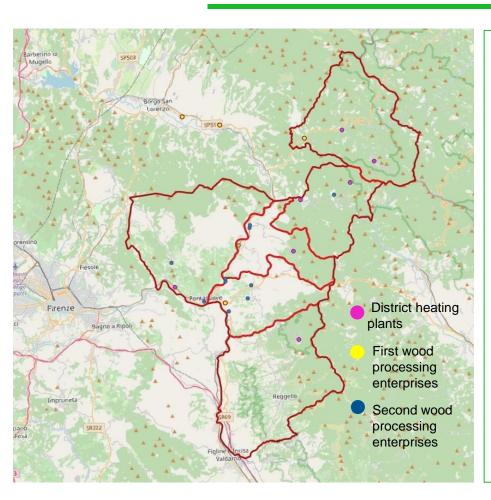
and bash script format.

SIA process - 3rd Step: Development of a GIS-Based procedure

Through a multi-step approach, the DSS r.forcircular is able to quantify:

- ✓ **Total potential availability of biomass**: estimation of total wood biomass from a forest area.
- ✓ **Technical availability of biomass** quantified for each forest area where the extraction of wood materials is possible.
- ✓ Economic availability of biomass both for traditional wood assortments and for woodchips considering only forest areas with a positive stumpage value.

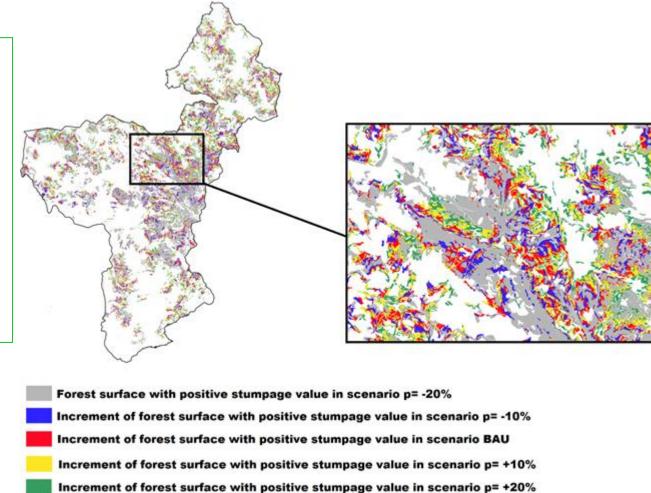
SIA process 4th Step: Implementation and testing in a pilot area in Italy (DSS)


Study area: Unione dei Comuni Valdarno e Val di Sieve 49,500 hectares with a forest index of 62%.

Public properties are characterized by the multifunctional role of forests.

Private properties are mainly focused on productive function.

SIA process 4th Step: Implementation and testing in a pilot area in Italy (DSS)



- ✓ Actors involved:
 - 5 district heating plants
 - 4 first wood processing enterprises
 - 11 secondary wood processing enterprises
 - 2 managers (1 public and 1 private)
 - 4 forest enterprises
- ✓ The selected indicators were used for the application of a Decision Support System (DSS): r.forcircular

SIA process - 4th Step: Implementation and testing in a pilot area in Italy (DSS)

Starting from the business-as-usual (BAU) scenario, the DSS r.forcircular is able to create different management scenarios to enhance the forest-wood supply chain.

CONCLUSIONS 1

- ✓ Simple and easy-to-apply indicators have been identified
- ✓ The indicators require a reduced number of primary data and information
- ✓ The list of indicators was integrated by the decision makers with a bottom-up approach
- ✓ Indicators and tools are updated and adapted to the situations
- ✓ SIA gives important input when defining best forest practices and the main driving factors

CONCLUSIONS 2

- ✓ DSS allows to import a series of geodatabases and to set parameters related to the study area boundaries: geographic, forestry and economic variables
- ✓ DSS can be considered one of the first spatial-based tool to facilitate circular bioeconomy quantification in forest sector
- ✓ DSS support managers and decision makers to practically address forest policy and planning goals
- ✓ The open-source and free DSS will be made available to operators to improve the performance of the forest-based sector in a circular bioeconomy perspective

Claudia Becagli, CREA, mail: claudia.becagli@crea.gov.it, phone: +39-055-2492238

Facebook: https://www.facebook.com/Forcircular-100228625181387/?ref=pages_you_manage

URL: https://www.dendronatura.net/progetti-1/progetto-for-circular/

